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Abstract
Down syndrome and Alzheimer’s disease share the same neuropathological hallmarks. Down syndrome individuals have an extra whole or part of chromosome 21. 
Exploring the molecular and cellular events governed by the genes on chromosome 21 gives the opportunity to find avenues for prevention or cure of Alzheimer’s 
disease in both Down syndrome and the general population. 
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Introduction
Alzheimer’s disease (AD), the most common type of dementia, 

was first defined by Alois Alzheimer, a German psychiatrist, and 
neuropathologist in 1906 [1]. The worldwide prevalence of dementia 
is fifty million, and this number is expected to reach 75 million in 2030 
if no cure is found [2]. Furthermore, it is the second leading cause 
of death in Australia [3]. To date, the challenge of finding a cure for 
Alzheimer’s disease continues a century after its discovery following the 
failure of clinical trials.

AD begins with changes in neuropathology in the hippocampus 
and as the disease progresses, spread to the cortex. Short term memory 
loss is one of the earliest signs, followed by long-term memory loss, 
confusion and mood swings. The later signs include anterograde 
amnesia, depression, irritability, language problems and memory 
retrieval deficits in explicit memory. Ultimately, patients are severely 
demented, lose ambulation and are reduced to a behavioural repertoire 
consisting of a few basic reflexes [4,5]. 

One avenue in searching for a cure is the connection between Down 
syndrome (DS) and AD. All Down syndrome individuals develop the 
neuropathology of AD at an early age but not all develop the clinical 
symptoms [6]; and the factors involved are not known. DS and AD 
share the same neuropathology. By the age of 40, DS individuals 
have developed neuropathology akin to AD [7], which includes 
β-amyloid (Aβ) plaques, tau-containing neurofibrillary tangles (NFT) 
[8], inflammation [9], basal forebrain cholinergic neuron (BFCN) 
degeneration [10], microglial degeneration [11], oxidative damage [12] 
and the presence of enlarged early endosomes [13]. 

Down syndrome is full or partial trisomy of chromosome 21 
(Homo sapiens autosome 21 (HSA21)), and is the most common 
intellectual disability with prevalence of 1 in 700 live births [14]. It was 
first described by Dr John Langdon Haydon Down in 1862 [15] who 
had a grandson with DS. In 1959, DS was classified as a chromosomal 
abnormality by Jerome Lejeune, a French doctor who detected 47 
chromosomes instead of the normal 46 chromosomes in each cell [16]. 
More than 95% of DS individuals have an extra whole chromosome 
21 which is the result of non-disjunction at maternal meiosis [17], and 
the risk of having a DS child due to this non-disjunction at meiosis 
rises with the maternal age [18]. Chromosome 21 is the shortest 

human autosome and contains 1-1.5% of the human genome [19]. 
There are a vast number of characteristics associated with the extra 
dosage of genes in people with DS [20] such as abnormal craniofacial 
morphogenesis, deficits in learning and memory, degeneration of basal 
forebrain cholinergic neurons, premature aging, Alzheimer’s disease 
neuropathology, decreased hippocampal and cerebellar volume, slow 
growth and development, haematological and immunological disorders 
and male sterility [21].

People with DS have a much lighter brain compared with people 
in the general population. The adult DS brain typically weighs 
about 1000g verses about 1350g in the non-DS population [22]. The 
DS brain has a smaller cerebellum, hippocampus, and frontal and 
temporal cortices [23,24]. Although at birth, DS individuals have 
brains with normal anatomy and morphology, during infancy the 
brain starts to fail normal development [25]. During the first year of 
life, the dendrites stop growing; as DS individuals age, the length and 
thickness of dendritic spines are reduced [25]. The neurons show signs 
of atrophy, and microglia and astrocytes are more prominent, and there 
is delayed myelination of oligodendrogliocytes [26]. In addition, there 
is an imbalance of cellular density within the grey matter [27]. In a 
recently published longitudinal study by Pujol and colleagues (2018), 
it was shown that the changes in DS brain volume was consistent with 
well-known anatomical changes in Alzheimer’s disease including the 
cortical thinning at the early stages [28] and during clinical progression 
[29] of Alzheimer’s disease. Pujol, et al. [30] also stated that their results 
exhibited DS hippocampal volume degeneration similar to the AD 
brain.

It has been suggested that endosomal defects in the brains of both 
DS and AD may contribute to pathological processes. Furthermore, 
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enlarged early endosomes, the initial neuropathological alteration 
known in the sporadic AD, were not observed in healthy aging brains 
[13]. Early endosomes were distinctly enlarged in DS neurons as early 
as 28 weeks of gestation [13] and in Ts65Dn, a mouse model of DS 
[31]. Through endocytosis, neurons achieve the rapid vesicle recycling 
necessary for maintaining neurotransmission, but endocytosis is 
also the process used by neurons and other cell types to take up 
macromolecules from the extracellular environment. Indeed, early 
endosomes are the sites of internalisation of APP and apolipoprotein 
E, as well as the site of Aβ peptide generation and is believed that all 
contribute to the development of the AD [32]. Moreover, defective 
neuronal growth factor signalling due to disturbances in endocytosis 
could be an early event in the manifestation of the AD [33] which can 
lead to the formation of amyloid plaques, hyperphosphorylated tau and 
NFTs and BFCN degeneration [34]. As mentioned, in DS, enlarged 
endosomes are present as early as 28 weeks of pregnancy in neurons 
[13], which leads to diffuse Aβ plaque deposition apparent at around 
12 years of age, and is followed by mature Aβ plaques when the DS 
individuals are in their 30’s [35].

Conti, et al. [36] demonstrated that mitochondrial gene expressions 
are altered in the DS. Interestingly, both AD and DS share mitochondrial 
dysfunction [37,38]. It has been shown that mitochondrial dysfunction 
facilitates or initiates molecular cascades of AD-like pathology [39]. 
In DS, mitochondrial dysfunction may also contribute to increased 
levels of oxidative stress leading to AD-neuropathology. Mitochondria 
are crucial for the regulation of reactive oxygen species (ROS) levels 
and the production of ATP in neurons [40]. Embryonic DS neurons 
have reduced levels of mitochondrial activity [38], and DS foetal tissue 
has decreased mitochondrial DNA (mtDNA) content [41]. Oxidative 
stress is a well-known cause of the mitochondrial apoptotic pathway 
[42] and DS foetal neurons display features associated with initiation of 
the mitochondrial death pathway [43]. Simón et al. [44] using a mouse 
model of APP overexpression showed that mitochondrial dysfunction is 
a result of APP overexpression although there was no sign of plaques in 
their brain. Indeed, Amyloid Precursor Protein (APP) gene that located 
on chromosome 21 is required for the manifestation of the AD [45], but 
not all the DS individual with APP exhibit the clinical symptoms [6]. 
This evidence demonstrates that there are other genes/factors involved.

Oxidative damage is a common pathway in manifestation of AD in 
DS and the general population. It is caused by overexpression of APP 
[46] and Superoxide dismutase-1 (SOD-1) [47,48] in DS. SOD-1 is also 
located on chromosome 21 and over-expressed in DS. The SOD-1 over-
expression increases the ratio of SOD‑1 to catalase and Glutathione 
Peroxidase (GPx) leading to higher production of hydrogen peroxide 
(H2O2) and inducing oxidative stress [47,48]. Studies have shown that 
in addition to SOD‑1 and APP, other genes located to chromosome 21, 
such as S100β [49,50], and Ets-2 [51] contribute to premature neuronal 
death and the development of AD.

Oxidative damage also includes the damage that the lipid 
peroxidation by-products such as 4-hydroxy-2-neonal (HNE) induce 
[52]. HNE, the most toxic by-product of lipid peroxidation, could 
interact with proteins and modifies them irreversibly impairing their 
function [53]. It can activate autophagy-lysosomal activity [54] and 
consequently the caspase-3 and cell death pathway [55]. Telomerase 
activity which stabilises DNA is downregulated by HNE [56]. It would 
be of interest to investigate what would trigger oxidative damage in AD 
brain of the general population.

Collectively, these are intriguing evidence that indicates looking 
closer into Down syndrome might have critical answers for Alzheimer’s 

disease not only for Down syndrome but also the general population. 
The functional genomic study of chromosome 21 and development of 
the various cellular and mouse models have all offered an astonishing 
chance to examine the molecular events of genome dose imbalance. 
Studies of DS could deliver a wealth of knowledge beyond the well-
known features of intellectual disability and dysmorphic characteristics. 
Understanding the molecular mechanism that leads to the phenotypes 
of AD in the DS could open the doors to limitless therapeutic options 
and unlock the mystery of Alzheimer’s disease.
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